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We introduce a regularization procedure to define electrostatic energies and forces in a slab system
of thickness h that is periodic in two dimensions and carries a net charge. The regularization
corresponds to a neutralization of the system by two charged walls and can be viewed as the
extension to the two-dimensional �2D�+h geometry of the neutralization by a homogeneous
background in the standard three-dimensional Ewald method. The energies and forces can be
computed efficiently by using advanced methods for systems with 2D periodicity, such as MMM2D
or P3M/ELC, or by introducing a simple background-charge correction to the Yeh–Berkowitz
approach of slab systems. The results are checked against direct lattice sum calculations on simple
systems. We show, in particular, that the Madelung energy of a 2D square charge lattice in a uniform
compensating background is correctly reproduced to high accuracy. A molecular dynamics
simulation of a sodium ion close to an air/water interface is performed to demonstrate that the
method does indeed provide consistent long-range electrostatics. The mean force on the ion reduces
at large distances to the image-charge interaction predicted by macroscopic electrostatics. This result
is used to determine precisely the position of the macroscopic dielectric interface with respect to the
true molecular surface. © 2009 American Institute of Physics. �doi:10.1063/1.3216473�

I. INTRODUCTION

The high interest in simulating surface and interfacial
problems has led to an active search for efficient methods to
compute long-range interactions in two-dimensional �2D�
periodic systems that have a finite thickness �2D+h geom-
etry�. 2D Ewald-type formulas were derived by a number of
workers.1–6 As most of these methods scale quadratically
with the number N of particles, other faster methods were
proposed. The MMM2D method has an adjustable preset ac-
curacy and scales as N5/3,7 see also Ref. 8. An approach with
an almost linear scaling was proposed by Yeh and Berkow-
itz: It consists in introducing a gap in the simulation box
along the nonperiodic dimension and to use a standard Ewald
code for three-dimensional �3D� periodic systems with the
summation order changed to slabwise �EW3DC method�.9

That method is accurate only when the gap in the simulation
box is large enough. The errors introduced by the unwanted
interactions with the layers artificially replicated in the non-
periodic direction can be exactly compensated for by adding
an electrostatic layer correction �ELC� term, whose compu-
tational cost is linear in the number of particles. When that
term is used in conjunction with a fast particle-mesh imple-
mentation of the Ewald sum, such as the P3M �Ref. 10� or
SPME �Ref. 11� algorithm, the resulting methods P3M/ELC
and SPME/ELC scale as N log�N�. In the case of the P3M/
ELC method, an error estimate is moreover available;12 it
allows the method to be tuned automatically to its optimal

operation point, which minimizes the computational time at
the desired accuracy. Another slab method with a N log�N�
scaling was proposed recently by Ghasemi et al.13 The dis-
tribution of errors is uniform across the slab in that latter
method, contrary to P3M/ELC, but it has no a priori error
estimate.

In all the aforementioned works, the system is assumed
to be overall charge neutral. In some situations, for example,
when studying surfaces with charged defects or when com-
puting ionic solvation free energies near an interface, one
needs a method applicable to a slab system carrying a net
charge. The purpose of this paper is to define a regularization
of the �divergent� lattice sum for the energy and to have an
efficient way to compute the regularized energies and forces.
This allows, for example, Monte Carlo and molecular dy-
namics simulations of non-neutral slab systems to be per-
formed with long-range electrostatic interactions that are
fully consistent with the 2D periodic boundary conditions
�2D-PBC�.

The regularization of the lattice sum via a suitable neu-
tralization of the simulation cell is presented in Sec. II. The
practical computation of these regularized sums is discussed
in Sec. III for three recent efficient algorithms: EW3DC,
P3M/ELC, and MMM2D. Numerical tests performed in
Sec. IV show that the three methods give consistent results
for energies and forces that agree as well with direct lattice
sum calculations. In Sec. V, a molecular dynamics simulation
of a sodium ion close to an air/water interface is performed
to demonstrate that the method does indeed provide consis-
tent long-range electrostatics.a�Electronic mail: vincent.ballenegger@univ-fcomte.fr.
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II. CHARGED SLAB IN 2D PERIODIC BOUNDARY
CONDITIONS

A. Definition of energy and forces

We consider a slab system composed of N particles with
charges qi and positions ri= �xi ,yi ,zi� �i=1, . . . ,N� in a simu-
lation cell which is periodically replicated in the x and y
directions with period Lx and Ly, respectively. In the nonpe-
riodic z-direction, the system has a finite extent h, which can
be arbitrarily large. Particle positions lie in the region delim-
ited by −Lx /2�x�Lx /2, −Ly /2�y�Ly /2, and −h /2�z
�h /2. The regions outside the slab, z�h /2 and z�−h /2,
are assumed to be void; their dielectric permittivity is that of
vacuum. The Coulomb energy in Gaussian units is given by
the sum over periodic images,

E =
1

2 �
nx,ny�Z

�
i,j=1

N

�
qiqj

�ri − r j + nxLx + nyLy�
, �1�

where Lx=Lxêx, Ly =Lyêy, and the prime denotes the omis-
sion of the i= j term in the primary cell nx=ny =0. Notice that
interactions between charges in the primary cell are ac-
counted for with a factor 1, since they appear twice in the
sum �1�, while interactions of charges in the primary cell
with charges in image cells �nx ,ny�� �0,0� are accounted for
with a factor 1/2 since they appear only once in the sum.
That factor 1/2 is necessary to avoid double counting in the
energy of the simulated macroscopic sample, as explained in
Appendix A.

The sum �1� is only defined for a charge neutral system
��iqi=0�, and even then, the sum is only conditionally con-
vergent. This means that we need to specify the order in
which we perform the sum. We adopt here the cylindrical
limit, i.e.,

E = lim
R→�

E�R� , �2�

with

E�R� =
1

2 �
nx,ny�Z

�nxLx�2+�nyLy�2�R2

�
i,j=1

N

�
qiqj

�ri − r j + nxLx + nyLy�
. �3�

Notice that the energy does not depend in the limit R→� on
the dielectric constant �� of the external medium in region
x2+y2�R2, contrary to the usual Ewald method for 3D-
periodic systems, where the dielectric constant of the outer
spherical medium at x2+y2+z2�R2 does intervene. The rea-
son for this can easily be understood on physical grounds.
Indeed, when the simulation cell is polarized, macroscopic
electrostatics tells us that surface charges appear at the di-
electric discontinuity between the external medium and the
macroscopic sample made up of copies of the central simu-
lation cell. The magnitude of these polarization surface
charges depend on �� and may produce a depolarizing field
in the sample that contributes to the energy. In the case of a
slab system, the charges induced on the side surfaces at x2

+y2=R2 are proportional to the area 2�Rh, while the electric
field created by them in the sample decays as R−2. In the
limit R→�, that field vanishes, so that the energy is indeed

independent of ��. The energy of a slab system depends,
however, on the dielectric permittivities �1 and �2 of the two
regions above �z�h /2� and below �z�−h /2� the slab,
which are here assumed to be empty ��1=�2=1�.

If some charges �electrons, counterions, etc.� are treated
implicitly in the system, the total charge

Qtot = �
i=1

N

qi �4�

of the simulation box can differ from zero. The energy �1�
remains finite only if the background charge provided by the
implicit particles is properly accounted for.

In systems with 3D periodicity where the implicit
charges are assumed to provide a homogeneous and isotropic
charge distribution, the background charge reduces to a uni-
form charge density �b=−Qtot /V, where V is the volume of
the simulation box. The standard Ewald method can be used
to sum the Coulomb interactions in such systems, including
the interaction with the neutralizing background, see e.g.,
Refs. 14 and 15. The Ewald formula for the energy of the
3D-periodic system takes then the form E3D=E�r�+E�k�

+E�d�+E�n�, where the three first terms are the usual real-
space, reciprocal-space, and surface contributions, while the
last term is an electroneutrality contribution

E�n� = −
�Qtot

2

2�2V
�5�

that depends on the Ewald splitting parameter �. The energy
E3D is independent of the free Ewald parameter � only if the
contribution E�n� is included. As the neutralizing background
is homogeneous, the energy E�n� is independent of the par-
ticle positions and does thus not lead to any force.

For future reference, it is useful to recall the origin and
physical content of term E�n�. It corresponds merely to the
sum of the direct-space interaction Ec-b

�r� of the charged par-
ticles with the neutralizing background, and to the direct-
space background-background interactions Eb-b

�r� on the other
hand. Thus E�n�=Ec-b

�r� +Eb-b
�r� , where

Ec-b
�r� = �

i

qi�
R3

	�r��bd3r = −
�Qtot

2

�2V
�6�

�see, e.g., Eq. �3.5� of Ref. 16� and

Eb-b
�r� =

1

2
�

V

dr�
R3

dr��b	��r − r����b

=
�b

2

2
�

V

dr
�

�2

=
�Qtot

2

2�2V
, �7�

where 	�r�=erfc��r� /r is the direct-space interaction. Notice
the factor 1/2 in the background-background energy that is
needed to avoid double counting �see Appendix A�. The
reciprocal-space interaction of the particles with the back-
ground and the reciprocal-space background-background en-
ergy exactly cancel the corresponding singularity in the
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charge-charge interactions. In the Ewald formula for a non-
neutral system, they are included in the canceling of the �oth-
erwise divergent� k=0 term in the reciprocal sum.

In a system with 2D periodicity, the background charge
associated with the implicit particles can take different
forms. For example, if these particles are homogeneously
distributed in some confined region �z1 ,z2� along the nonpe-
riodic direction, they may be replaced by a uniform neutral-
izing slab in that region. That charged background slab will
clearly give rise an inhomogeneous electric potential V0�z�
and to forces on charged particles. If the implicit particles are
not confined to some particular region of space, it is appro-
priate to introduce a neutralization of the simulation cell that
does not introduce any background force on the particles.
Having a neutralization with this property is especially use-
ful because it is generic; it can be used to simulate systems
with any other neutralizing background by simply adding the
corresponding background electric potential V0�z� as an ex-
ternal field in the simulation.

Unlike the 3D case, a neutralization that does not exert
forces cannot be realized in 2D-PBC by adding a uniform
charge distribution over all space; therefore a different route
is needed to deal with 2D systems with a net charge. We
propose to simply substract the singularity that arises due to
the excess charge, which can be calculated analytically as
follows. The asymptotically diverging behavior of E�R� as
R→� can be found by approximating the slab as a charged
sheet carrying a surface charge density 
sheet=Qtot / �LxLy�
and by noting that the divergence arises from the large dis-
tance contributions to the interaction energy of the simula-
tion cell with this sheet. This divergence is

1

2
Qtot�

0

R 
sheet

r
2�rdr =

�Qtot
2

LxLy
R , �8�

where the factor 1/2 ensures, as in Eq. �1�, that one measures
only half of the interaction energy of the simulation cell with
the periodic copies of the cell �see Appendix A�. Subtracting
Eq. �8� from Eq. �3�, we define the energy of a charged
system in 2D-PBC as

E = lim
R→�

�E�R� −
�Qtot

2

LxLy
R	 . �9�

Notice that Eq. �9� is the result of a formal regularization of
the divergent lattice sum �1�. We will show in Sec. II B that
this formal regularization is equivalent to a neutralization of
the system by two charged walls.

Forces follow by differentiation of this potential energy
function with respect to particle positions. As the regulariz-
ing term in Eq. �9� is independent of particle positions, it
does not give rise to any contribution to the forces, as re-
quired. Notice that the lattice sum for the force, given by Eq.
�1� with an additional gradient operator −�i, is conditionally
convergent from the start in systems with a net charge, and
hence well defined once the summation order is specified.

B. Interpretation of energies

The regularization �9� of the energy can be interpreted as
a neutralization of the system by two charged walls located
on each side of the slab, at z= �h /2, that carry a surface
charge density


 = −
Qtot

2LxLy
. �10�

These walls can be thought of as arising from a uniform
neutralizing charge density created by the particles treated
implicitly in the regions above �z�h /2� and below �z�
−h /2� the slab. Since these walls exert �constant� equal and
opposite forces on charged particles located in between
them, they have no net physical effect, apart for a shift in the
energy. Let us show that the presence of the two walls regu-
larizes the energy �3� in accordance with the prescription �9�
and determine the shift in the energy that results from the
particle-wall and wall-wall interactions.

As interactions are summed in a cylindrical limit, we
treat the walls as large circular plates of radius R→�. The
electrostatic potential created by a plate of radius R with
surface charge 
 reads

�R�z� = �
0

R �
0

2� 



r2 + z2
rdrd = 2�
�
R2 + z2 − �z��

�11�

at a distance z from the plate on its symmetry axis. When R
is large, �R�z� behaves as

�R�z� = 2�
�R − �z�� + O� 1

R
	 . �12�

Two large circular plates at �h /2 create therefore a constant
electrostatic potential in between the plates given by

�slab = 2�
�2R − h�, R → � . �13�

The interaction energy of the charges in the simulation box
with the two neutralizing walls is therefore

Ec-w�R� = Qtot�slab = −
�Qtot

2

LxLy
�2R − h� . �14�

The mutual interaction energy of the walls is �per cell�

Ew1-w2
�R� = �R�h�
LxLy =

�Qtot
2

2LxLy
�R − h� , �15�

while the self-energies of the two walls read �per cell�

Ew1-w1
�R� + Ew2-w2

�R� = 2
1

2

LxLy�R�0� =

�Qtot
2

2LxLy
R . �16�

Combining Eqs. �14�–�16� with Eq. �3�, the electrostatic en-
ergy of the system complemented with the two neutralizing
walls is

Ẽ = lim
R→�

�E�R� −
�Qtot

2

LxLy
R	 +

�Qtot
2 h

2LxLy
. �17�

The neutralization by two walls gives therefore energies that
agree with the regularized energies �9�, apart for an
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h-dependent term that does not depend on the particle posi-
tions. That term is a constant shift in the energy that can be
dropped because it has no physical significance.

In summary, the energy of a system carrying a net charge
in 2D-PBC is defined by Eq. �9�, which can be interpreted as
the energy of the system neutralized by two walls, with the
prescription that the constant h-dependent shift in the energy
is omitted. The present regularization procedure to simulate
slab systems with a net charge constitutes the first significant
result of this paper.

C. Systems with a changing net charge

The computation of the solvation free energy of ions at
infinite dilution is an example where a simulation box with a
net charge is used.17 When computing this free energy via
the thermodynamic integration method, the ion is progres-
sively charged, and the charging free energy can be deter-
mined from the measured fluctuations of the solute electro-
static energy.14 Let us show that charging free energies can
be correctly computed in 2D periodic systems using defini-
tion �9� of the energy, despite the fact that the net charge Qtot

varies during the simulation.
As shown in Appendix B, the energy �9� can be written

using an effective kernel PBC�r� which takes into account
the 2D-PBC:

E =
1

2 �
i,j=1

N

qiqjPBC�ri − r j� . �18�

We assume now that a charge q is added at position r. The
energy of this new system is

Eq = E +
1

2
�2�

i=1

N

qiqPBC�ri − r� + q2PBC�0�	 , �19�

where PBC�0� is the regularized interaction energy of a
single unit charge with its own periodic images �the value of
PBC�0� is computed in Sec. IV A�. One can rewrite Eq. �19�
as

Eq = E + �
0

q

�q��r�dq�, �20�

where

�q�r� =
dEq

dq
= �

i

qiPBC�ri − r� + qPBC�0� . �21�

�q��r� is nothing but the electrostatic potential at r created
by all other charges in the system and by the periodic images
of the charge q� already present at r. Equation �20� gives the
change in energy when the charge q is added progressively in
the system. From Eq. �21�, we see that this change in energy
is given by the correct expression associated with the 2D-
PBC. In particular, the last term in �q�r� gives rise to the
charge self-energy 1

2q2PBC�0� which is a known contribu-
tion to the energy in PBC.14,16 The fact that the regularized
energy �9� can be written in the form �18� is therefore suffi-
cient to conclude that the energy difference between two
systems characterized by a different net charge takes a mean-

ingful value �which includes variations in the self-energies of
the charges�. Equations �18�–�21� are the counterparts of for-
mally identical formulas that hold in the standard Ewald
method for neutral and non-neutral systems in 3D-PBC. As
shown in Ref. 14, the charging free energies computed using
the Ewald method converge very quickly to their thermody-
namical values once a simple correction for finite-size effects
is included in the calculations �see also the detailed analysis
of finite-size effects of Ref. 18�.

The results of this section, together with Eq. �9�, show
that the thermodynamic integration method can be used to
compute charging free energies in inhomogeneous systems
with slab geometry. In the present approach, the long-range
electrostatic interactions are treated in a manner fully consis-
tent with the 2D periodicity.

III. FAST COMPUTATIONS OF ENERGIES
AND FORCES

The regularized energy �9�, and the forces on particles
derived from it, can be computed quickly in simulations,
thanks to advanced algorithms, as detailed in the next sec-
tions.

A. MMM2D method

In the MMM2D method,7 a convergence factor
exp�−��ri−r j +nxLx+nyLy�� is introduced in the energy �1�,
and the sum is computed in the limit �→0 using an O�N5/3�
algorithm.

When the system is non-neutral, the large distance
charge-charge interactions generate a divergent contribution
as �→0. By the same reasoning as that which leads to
Eq. �8�, the diverging behavior is given by

1

2
Qtot�

0

�


sheet
exp�− �r�

r
2�rdr =

�Qtot
2

LxLy

1

�
. �22�

The convergence factor approach is thus equivalent to the
cylindrical limit approach with the role of variable R played
by 1 /�. The MMM2D method can therefore be used to com-
pute the regularized energy �9� and forces by simply drop-
ping the divergent contribution �22� in the MMM2D formu-
lae for the energy. As contribution �22� vanishes in a charge
neutral system, it is already omitted in the MMM2D method,
which can hence be used without any modification to simu-
late non-neutral slab systems, with energies and forces de-
fined according to Sec. II.

B. The Yeh–Berkowitz approach: EW3DC method

In the EW3DC method of Yeh and Berkowitz,9 a gap is
introduced in the simulation box along the nonperiodic
z-direction and a standard Ewald code for 3D-periodic sys-
tems is used, typically in a fast O�N log N� particle-mesh
implementation such as P3M10 or SPME.11 The interactions
must be summed in a slabwise order. The surface term �also
known as the dipole term� in the Ewald formula for the en-
ergy takes then the form
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E�d� =
2�

V
Mz

2, �23�

where Mz=�iqizi is the total dipole moment of the simula-
tion box along the direction normal to the slab and V
=LxLyLz is the volume of the box. The dipole term contrib-
utes not only to the energy but also to forces via the expres-
sion Fi

�d�=−�iE
�d�, i.e., it leads to a normal force

Fi
�d� = −

4�Mz

V
qiêz �24�

on particle i. Since Mz depends on the choice of the origin in
systems with a net charge, the EW3DC method obviously
cannot be applied to such systems without modification.

When using the Ewald method for a system with a net
charge in 3D-PBC, it is assumed implicitly that there
are particles distributed uniformly in the simulation box so
that they create a constant background charge density �b

=−Qtot /V, which neutralizes the system. This neutralization
obviously differs from the two walls neutralization defined in
Sec. II. Results of the EW3DC approach applied to a system
with a net charge will hence need to be corrected �see Eq.
�28�� to avoid spurious effects arising from unwanted inter-
actions of the particles with the background charge �b �in
particular, the background charge located in region −Lz /2
�z�Lz /2�.

The background charge �b contributes to the Ewald en-
ergy not only via Eq. �5� �together with the cancellation of
the k=0 term in the reciprocal Ewald sum�, but also via the
dipole term �23�, because the background charge has to be
accounted for when computing the total dipole moment Mz

of the simulation box. Let us fix the origin of our Cartesian
coordinate system at the center of the box. The contribution
of the background charge to the total dipole moment van-
ishes then by symmetry, allowing expression �23� to be used
without modification.

We assume that the gap in the simulation box is large
enough so that interactions between the slab and the un-
wanted replicas of the slab in the z-direction are entirely
negligible �see Sec. IV�. The simulated system can then be
viewed as a charged slab, of width h, embedded into another
slab of width Lz carrying a neutralizing charge density �b.
This charge density does not contribute to the dipole term, as
with our choice of the coordinate system, its dipole moment
is zero. Moreover, the Yeh–Berkowitz approach relies on the
fact that for a sufficiently large Lz, the interaction of the
charges in the primary slab with the image charges in the
z-direction can be approximated by a homogeneous charge
distributions. Under this assumption, the interactions with
the charges and the background �b in the image slabs cancel,
and we are left with the contribution of the background only
in the primary slab itself. The electrostatic energy of the
system clearly depends on the position of the particles within
the larger neutralizing slab, because the latter slab produces a
parabolic electrostatic potential

V0�z� = − 2��b�
−Lz/2

Lz/2

�z − z��dz� = − 2��b�z2 + �Lz

2
	2	 .

�25�

The fact that the energy depends on the position of the
charged slab system along the z-axis can also be seen on the
level of the Ewald formula: The total dipole moment Mz in
the surface term �23� clearly depends on the position of the
slab in the simulation box. Note that we use here again Eq.
�12� but leaving out the R-dependent term, which leads to the
divergent contribution �8� already accounted for in the 3D
Ewald method with slabwise summation order. To recover
the energy of the system defined by the regularization proce-
dure of Sec. II, we only have to subtract the interaction en-
ergy of the primary charges with the neutralizing slab,
namely,

Ec-b = �
i

qiV0�zi� = − 2��b��
i

qizi
2 + Qtot

Lz
2

4 	 , �26�

and the self-interaction of the background slab, i.e.,

Eb-b =
1

2
LxLy�

−Lz/2

Lz/2

�bV0�z�dz = 2��bQtot
Lz

2

6
. �27�

We find thus that the contribution

Ebcc ª − �Ec-b + Eb-b� = 2��b��
i

qizi
2 + Qtot

Lz
2

12	 , �28�

which we call the background charge correction �bcc� term,
must be added to the Ewald energies when applying the
EW3DC approach to a system with a net charge.

In summary, to simulate a charged slab system using the
EW3DC approach, one uses a standard 3D-Ewald code with
slabwise summation order, i.e., with surface term �23�, in a
simulation box with a large enough gap. The interaction en-
ergy �5� with the neutralizing background must be included
�since the EW3DC approach computes the 3D Ewald energy
E3D=E�r�+E�k�+E�d�+E�n��, and the correction term �28�
must be added to remove the effect of the parabolic potential
created by the neutralizing background slab. Combining Eq.
�28� with Eq. �23� yields a corrected surface term given by
expression

Ebcc
�d�

ª E�d� + Ebcc =
2�

V �Mz
2 − Qtot�

i

qizi
2 − Qtot

2 Lz
2

12	 .

�29�

Notice that Ebcc
�d� is independent of the z-position of the slab in

the simulation box, i.e., it is invariant under translations z
→z+a for any value of a, as it should for a system in the
2D+h geometry. There is thus no specific condition on the
origin of the coordinate system when using Eq. �29�. Forces
follow by differentiation of the energy. Taking the negative
gradient of Eq. �29� with respect to zi, one obtains the ex-
pression
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− �i�Ebcc
�d� � = −

4�

V
�Mz − Qtotzi�qiêz �30�

for the contribution to the force on the ith particle arising
from the surface term and from the bcc. The corrected sur-
face terms �29� and �30� are needed to extend the widely
used EW3DC method to non-neutral systems, in accordance
with the regularization scheme introduced in Sec. II. This
constitutes the second important point of this paper. It is
interesting to note that the final result �30� for the force
agrees with a new interpretation of the surface term of the
Ewald method proposed in Ref. 19. In that reference, the
authors derive Eq. �30� from an analysis of the surface term
in the 3D-Ewald method for different summation orders �in
particular, slabwise�, considering also non-neutral systems
but without referring to any neutralizing background. We
stress, however, that, whatever the summation order, the real-
space interaction energy �5� with the neutralizing back-
ground charge must be included when computing Ewald en-
ergies to avoid results that depend on the free Ewald
parameter �.

C. The electrostatic layer correction:
P3M/ELC method

The P3M/ELC method12 uses the same Yeh–Berkowitz
approach based on a gap, but it is much more efficient than
the EW3DC method because it includes an ELC term that
subtracts the interactions of the slab with the unwanted rep-
licas of the slab in the nonperiodic direction. The ELC term
allows to reduce significantly the size of the gap needed in
the simulation box, and hence the computation effort. Error
estimates exist moreover for the ELC term.12 Since the
EW3DC method is a particular case of the P3M/ELC method
where the ELC is entirely neglected, the error estimate of the
latter method can actually be used to control the accuracy of
the EW3DC method as well. As shown by Eq. �18� of Ref.
12, the accuracy of these gap methods is essentially propor-
tional to exp�−2�Kg�, where K is the ELC cutoff and g the
width of the gap. The EW3DC method does not involve any
ELC terms; therefore the cutoff is essentially K
=min�Lx

−1 ,Ly
−1�, and consequently the error is controlled by

the ratio g /max�Lx ,Ly� and not by the ratio h /Lz as claimed
in the original EW3DC paper9 and still commonly believed.

Not surprisingly, for non-neutral systems, one has to use
in P3M/ELC exactly the same bcc �29� as in the EW3DC
method. This correction is included in the formula for the
ELC term derived recently in the most general case of a
�possibly non-neutral� slab system in-between dielectric
walls.20 The algorithm described in Ref. 20 can thus be used
without modification21 to compute energies and forces in
charged slab systems, in agreement with the regularization
procedure of Sec. II.

IV. NUMERICAL TESTS

In this section the correctness and accuracy of the results
stated in Sec. II are tested numerically by computing ener-
gies and forces in simple systems, using Eq. �9� with direct
summation on one hand and the methods MMM2D,

EW3DC, and P3M/ELC on the other hand. To specify what
electrostatic method is used in the EW3DC approach, we add
a suffix “slab” to the method, which yields denominations
such as Ewald/slab, P3M/slab, or SPME/slab for the various
incarnations. When the ELC term is employed in these meth-
ods to substract the unwanted interlayer interactions, we de-
note the methods by Ewald/ELC, P3M/ELC, and SPME/
ELC.

A. Madelung energy of a 2D square charge lattice

We consider a square simulation box �Lx=Ly =L� con-
taining a single charge q under 2D-PBC. The regularized
electrostatic energy �9� of this system is equal to the sum of
the Coulomb interactions of the charge with all its periodic
images and with a neutralizing sheet in the plane of the 2D
charge lattice �because the two neutralizing walls coalesce
into a single sheet since h=0�. The energy of this system
takes the form

E = −
q2

2
PBC�0� = −

q2

2

F
L

, �31�

where F is a dimensionless constant. Using the regularized
direct-space sum �9� to compute this Madelung energy, we
obtain F�3.9. A high accuracy is difficult to attain with
formula �9� because it expresses the energy as a difference
between two large numbers and also because the conver-
gence with R is slow. Nijboer and Ruijgrok found F
�3.900 26 by using another formula better suited for this
purpose.22

Using the MMM2D method implemented in the simula-
tion package ESPRESSO �Ref. 23� and tuning the algorithm to
accuracy 10−10, we obtain

F � 3.900 264 920 0, �32�

where the precision is mainly limited by the employed
implementation of the Bessel functions. The MMM2D
method clearly works for non-neutral systems and is able to
compute quickly 2D Madelung energies to a very high accu-
racy.

We computed also the energy of this Madelung system
by using the P3M/ELC method also implemented in
ESPRESSO. We used an accuracy goal of 10−4, which resulted
in the following values for the various parameters: Ewald
splitting coefficient �=7.251 84L−1, real-space cutoff rcut

=0.45L, mesh with 32 points in each direction, charge as-
signment order=6, gap size=0.1L, and ELC far cutoff
=26 /L. This calculation reproduced the first five digits of F,
thus validating the bcc �29� for the EW3DC and P3M/ELC
methods.

B. Forces between two particles

In molecular dynamics simulations, one is mainly inter-
ested in the accuracy of the force computation, since the
forces govern the dynamics of the system. Figure 1 shows
the pair force between two like charged unit point charges at
�0,0,0� and �1,1 ,z� in a unit cell of dimensions Lx=Ly =Lz

=L=10 under 2D-PBC; z changes from 0 to L. This system
is characterized by a net charge Qtot=2 and a varying dipole
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moment Mz=qz; therefore it is well suited to demonstrate the
effect of the net charge in the various electrostatic methods
that we tested:

• Well-converged direct summation taking into account
1002 images,

• MMM2D method of Ref. 7,

• P3M with metallic boundary conditions, i.e., without
surface term,

• P3M with the slab-corrected surface term following
Ref. 9,

• P3M with the slab-corrected surface term and bcc �30�,

• P3M with the ELC extension following Ref. 20.

MMM2D and the direct summation agree in at least two
digits; therefore only the results for MMM2D are shown.
MMM2D was again tuned for a precision of at least 10−10,
and P3M and ELC for a precision better than 10−4. When z
�L /2, the force computed with direct summation and
MMM2D takes its asymptotic value 2� / �LxLy�, which cor-
responds to the force exerted on a unit charge by a charged
sheet with surface charge density 1 / �LxLy�.

P3M with slabwise summation order and bcc �30� agrees
well with the direct summation in the expected range of va-
lidity, namely, for z�L /3. Correspondingly, P3M with the
ELC extension, which was tuned to agree with high preci-
sion for z�Lz /2, agrees well up to z=9. In contrast to this,
applying only the slab correction of Ref. 9 actually increases
the error of the plain P3M method with metallic boundary
conditions.

Would the two unit charges be oppositely charged and
hence the system neutral, the force between the charges
would simply be the opposite of those presented in Fig. 1.
This is indeed the case for all methods, again with the ex-
ception of P3M/slab, which gives correct forces only in sys-
tems with no net charge.

V. EXAMPLE: MEAN FORCE ON AN ION NEAR
AN INTERFACE

A precise understanding of the adsorption, or depletion,
of ions near an interface is important in several fields, for
example, in biophysics, where the hydrophobic solid/water
interface governs the aggregation and folding of apolar mol-
ecules, and in atmospheric chemistry, where physicochemi-
cal processes occur at the air/water and ice/water interfaces.
Potentials of mean force for ions at infinite dilution have
been obtained recently at such interfaces.24–26 In these
works, the simulated systems had a net charge and the long-
range nature of the Coulomb force was taken into account by
using 3D Ewald summations with a gap in the simulation
box �EW3DC method if the summation order was changed to
slabwise�. As shown in Sec. IV, it is essential to include the
newly derived bcc �30� for the electrostatic forces to be cor-
rect in such non-neutral simulations.

According to macroscopic electrostatics, an ion close to
a dielectric interface sees an electrostatic potential that cor-
responds to a �fictitious� image charge located symmetrically
on the opposite side of the interface.27 In the case of an ion
close to an air/water interface, the dielectric contrast is about
80, and this image-charge effect is expected to contribute to
the mean force on the ion as it approaches the surface. We
performed a molecular dynamics simulation of this non-
neutral system to show that the EW3DC method, when
complemented with the bcc �30�, does lead to results that
agree with the prediction of macroscopic electrostatics.

The simulation box was setup similarly as in Refs. 24
and 26: A sodium ion carrying charge q=+e is at a distance
z from the surface of a water slab of width h=2.483 nm
made up of 2048 water molecules. The dimensions of the
simulation box are Lx=Ly =2h and Lz=5h, i.e., a gap of
width 4h is introduced in the nonperiodic direction normal to
the slab. Water molecules are described according to the
SPC/E model28 and the Lennard-Jones parameters for the
sodium-water interaction are taken from Ref. 29 in their non-
polarizable form. The simulations were performed using a
modified version of the GROMACS simulation package,30 in
which we implemented the bcc. The equations of motion
were integrated using the leap-frog algorithm with a time
step of 2 ps, and the temperature was kept constant at 300 K
using the Berendsen method. The Coulomb interactions were
computed using the SPME method11 with a slabwise summa-
tion order and bcc �SPME /slab+bcc�. The cutoff for the
van der Waals and real-space Coulomb forces are both set to
1 nm.

The sodium ion is free to move in the x-y directions, but
its distance to the water surface is kept fixed during each
simulation �a rigid constraint prevents the z coordinate of the
ion to change�. The position of the surface is defined by the
criterion that the density of water at the surface is half that of
the bulk. For each considered distance of the ion, we per-
formed a 5 ns long simulation to determine the mean force
Fz acting on the ion. We simulated also the case of a water
surface confined by a �hydrophobic� hard wall located
0.1 nm above the water surface. In the latter case, the water
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FIG. 1. The force Fz between two unit charges at a relative position of
�1,1 ,z�, as a function of z for various algorithms. P3M/slab stands for the
EW3DC approach using P3M as the underlying electrostatic method, while
P3M /slab+bcc is the same method with the addition of the bcc �30�.
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molecules whose oxygen atom hit the hard wall were re-
flected back into the liquid by inverting the z-component of
their velocity.

When the water molecules are prevented by the hard
wall to partially solvate the ion, the measured force on the
ion is well predicted by the image-charge interaction of mac-
roscopic electrostatics �see Fig. 2�. According to this theory,
an ion of charge q in a medium of permittivity �1�1 �air�
and at a distance z from a slab of width h and permittivity
�2�80 �water� sees an electrostatic potential31

��z� =
q

�1
� �1 − �2

�1 + �2

1

2z

−
4�1�2

��1 + �2�2 �
n=1

� � �1 − �2

�1 + �2
	2n−1 1

2z + 2nh . �33�

The first term in �33� is an image-charge due to the first
interface, while the infinite sum corresponds to additional
image charges that are due to the presence of the second
interface at the other side of the water film. The force on the
ion derives from its electrostatic potential energy �0

q��z�dq
= 1

2q��z� and is plotted as a dotted line in Fig. 2. The poten-
tial �33� corresponds to the interaction of an ion with a di-
electric slab under the boundary condition of zero field at
infinity, while the electrostatic potential is computed in the
simulations under 2D-PBC. To account for this periodicity in
the x-y directions, one has to sum up over the periodic im-
ages of the image charges. This was done by setting up a cell
containing the ion and the infinite set of image charges32 that
appear in Eq. �33� and by computing the force on the ion
using the MMM2D method. The result, assuming the con-
tinuous dielectric interface to be placed at a distance d�
=0.22 Å below the molecular water surface, is shown as a
dashed line in Fig. 2. That prediction of macroscopic elec-
trostatics agrees very well with the simulation results. The
agreement holds at all distances in the case of the confined
water surface, while it holds only at large distances in the

case of the free water surface. The simulations show that the
ion is indeed partially solvated even when quite far away
from the water surface �up to z�1.45 nm�.

The fact that the dielectric interface is located very close
to the molecular water surface agrees with the very sharp
dielectric permittivity profile of a water slab determined in
Ref. 33. A more detailed analysis of the relative position
between the molecular water surface and the position of the
dielectric interface �in the case of a confinement more real-
istic than a hard wall� will be performed in a future work.

We note that finite-size effects are quite pronounced with
the size of the simulation box used in this example. The
prediction of macroscopic electrostatics changes indeed sub-
stantially once the periodicity in the x-y directions is intro-
duced �compare dotted and dashed lines in Fig. 2�. This is
not unexpected since Coulomb interactions with image
charges in the neighboring cells are negligible only if Lx and
Ly are sufficiently large. To determine a force profile that is
free from finite-size effects, a larger simulation box should
clearly be used.

Because of the use of the slab geometry, the ion sees two
dielectric interfaces instead of a single one. This unwanted
feature can be avoided by introducing a hard wall with the
same dielectric permittivity as water at the other side of the
slab. This will remove almost entirely the unwanted effects
of the second dielectric interface. The latest versions of the
MMM2D and P3M/ELC methods that include image charges
can be used to simulate such a slab system with different
continuous dielectric media of permittivities �1 and �2 at the
two sides of the slab.20,34

VI. CONCLUSIONS

A regularization of the electrostatic energy of 2D peri-
odic slab systems bearing a net charge has been proposed.
That regularization is the analog in 2D-PBC of the usual
regularization of Ewald sums in three dimensions by a ho-
mogeneous neutralizing background charge density. The
regularized energies, given by Eq. �9�, can be interpreted as
resulting from a neutralization of the system by two charged
walls on each side of the slab, with the prescription that the
constant shift in the energy proportional to the wall-wall
separation is omitted. We proved that energy differences be-
tween two systems characterized by a different net charge
take meaningful values, which include variations in the self-
energies of the charges in 2D-PBC. The method can thus be
used to simulate systems with a varying net charge, for ex-
ample, to determine charging free energies in inhomoge-
neous systems with slab geometry.

The regularized energies, and the forces that derive from
them, can be computed efficiently by using advanced elec-
trostatic algorithms for 2D periodic systems, such as
MMM2D, EW3DC, and P3M/ELC. We proved that the
MMM2D method can be applied without any modification to
non-neutral systems, while methods based on the EW3DC
approach necessitate the use of a bcc, given by Eq. �28�,
which affects both energies and forces. The bcc removes the
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FIG. 2. Mean force on a sodium ion at a distance z from a water surface,
which is either free �black circles� or confined by a hydrophobic hard wall
located 0.1 nm above the surface �white squares�. The image-charge force
predicted by macroscopic electrostatics for a dielectric interface located at
z=−0.22 Å is shown for two different choices of boundary conditions: zero
field at infinity �dotted line� and 2D-PBC �dashed line�.
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effect of the parabolic electrostatic potential inherited from
the neutralization of the cell implicit in the 3D-Ewald
method applied to a charged slab system.

Numerical tests have been done to demonstrate the cor-
rectness and the accuracy of the results. When the bcc is
added to the EW3DC results, the three methods �MMM2D,
EW3DC+bcc, and P3M/ELC� give consistent results for the
energies and forces, that agree also with well converged
direct-sum calculations. As shown in Fig. 1, the application
to non-neutral systems of the uncorrected EW3DC approach
leads to incorrect forces which are even further away from
the reference direct-sum result than the plain 3D-Ewald
method with metallic boundary conditions. We stress that the
surface terms with bccs �29� and �30� are easy to evaluate
and have no computational cost in a simulation.

The three methods reproduce the known value of the
Madelung self-energy on an ion in 2D-PBC, which can be
computed quickly to very high accuracy using the MMM2D
method. That energy, given by Eself=−q2F / �2L� with F
�3.900 264 920 0 in a square simulation box �Lx=Ly =L�,
plays an important role in the stability of 2D Wigner crystals,
in charging free energy calculations under PBC and in the
study of finite-size effects.18,22,35

A further demonstration that our method provides cor-
rect long-range electrostatic forces is provided in the form of
a calculation via molecular dynamics simulations of the
mean force on a sodium ion close to an air/water interface. A
nice agreement with the image-charge prediction of macro-
scopic electrostatics is observed within the limits of validity
of the theory. The dielectric discontinuity at the air/water
interface in the macroscopic model is found to be situated at
the very surface of the water slab �at a distance of 0.22 Å
under the molecular water surface defined by the criterion
used in Sec. V�.

We expect the results of the present work to be of wide
applicability to simulations of slab systems whenever an im-
plicit uniform background of charges can be assumed. Re-
search works related to the calculation of ionic solvation free
energies, study of surfaces with charged defects, bilayers of
charged particles, etc., can substantially benefit from the
derivations made in the present study.
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APPENDIX A: ENERGY DENSITY AND FACTORS
1/2

This appendix explains the origin of factor 1/2 in some
formulas, for example Eq. �1� when �nx ,ny�� �0,0� and Eqs.
�7� and �8�, but not in others such as Eqs. �6� and �14�. We
first note that, as a rule of thumb, interaction energy Ea-b

between two identical objects �a=b� gets a factor 1/2, while
no such factor must be included when a�b.

The factor 1/2 is a consequence of the fact that, when
using PBC, the energy that one computes is not the total
energy of the simulation box itself, but the energy per box of
the macroscopic sample made up of many copies of the pri-
mary cell. Indeed, dividing the macroscopic sample in B
boxes, its energy can be written as

Esample = �
b=1

B

Eb +
1

2 �
b,b�=1

b��b

B

Eb-b�, �A1�

where Eb is the energy of box b and Eb-b� is the interaction
energy between particles in box b and particles in box b�.
Since the macroscopic sample is large, the number of boxes
near the surface of the sample is negligible in front of the
number of boxes in the volume of the sample. We can there-
fore write, assuming a homogeneous sample divided in B
identical boxes of volume Vb,

1

2 �
b,b�=1

b��b

B

Eb-b� � B
1

2 �
b�=1

b��primary box b

B

Eb-b�. �A2�

We conclude that the energy per box is

E ª

Esample

B
= Eb +

1

2 �
b�=1

b��primary box b

B

Eb-b�. �A3�

All interactions between the simulation box and the periodic
images of the simulation box must therefore be accounted for
with a factor 1/2 to avoid double counting in the energy of
the macroscopic sample. Notice that the ratio of the energy
per box divided by the volume of the simulation box,
eªE /Vb=Esample / �VbB�, does measure correctly the energy
density of the macroscopic sample since VbB is the volume
of that sample. This explains the factor 1/2 in Eq. �1� when
�nx ,ny�� �0,0�.

When the system contains a neutralizing background, the
interaction of the primary box b1 with an image box b2 is the
sum of four interactions energies �which must all be ac-
counted for with a factor 1/2� between four different entities:

Eb1-b2
= Ec1-c2

+ Ec1-�2
+ E�1-c2

+ E�1-�2
, �A4�

where ci ��i� stands for the charges �neutralizing background
charge density� in box bi, i=1,2. The absence of factor 1/2 in
Eq. �6� results therefore from the fact that this energy is
actually the sum of the two energies Ec1-�2

and E�1-c2
which

lead to the same value after summation over all boxes. The
energies Ec1-c2

and E�1-�2
appear only once in Eq. �A4�, so

there is indeed a factor 1/2 in equations such as Eq. �8� or
Eq. �7� when r��Vb1

. When r��Vb1
, the factor 1/2 in Eq.

�7� simply prevents double counting within the box, accord-
ing to the usual relation

�
i

�
j�i

Ei−j =
1

2 �
i,j

i�j

Ei−j . �A5�
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APPENDIX B: EFFECTIVE KERNEL FORMULATION

In this appendix, we demonstrate that the energy given
by Eq. �9� of a charged system under 2D-PBC can be written
as a sum over an effective kernel PBC�r� as in �18�, similar
to the Ewald sum in 3D-PBC.36,37 To this aim, we reformu-
late Eq. �3� as

E�R� =
1

2 �
i,j=1

N

qiqjV�ri − r j� +
1

2 �
i,j=1

N

qiqj �
�nx,ny��D�R�

�
1

�nxLx + nyLy�
+

1

2 �
i,j=1

N

qiqj �
�nx,ny��D�R�

�� 1

�ri − r j + nxLx + nyLy�
−

1

�nxLx + nyLy�
	 , �B1�

where

V�r� = �0 if r = 0

1/�r� if r � 0 ,
 �B2�

and D�R� denotes all �nx ,ny��Z2 with 0� �nxLx�2+ �nyLy�2

�R2. The first term is already of the desired form; by ap-
proximation of the sum by an integral, one can see that the
second term is of the form

1

2 �
�nx,ny��D�R�

1

�nxLx + nyLy�
=

�R

LxLy
+ S + O�R−1� , �B3�

where the first term added up over all particles gives the
singularity ��Qtot

2 /LxLy�R that is subtracted in Eq. �9�, and
the constant term S is the self-energy of a unit charge, which
is given by S=−F / �2L� with F�3.900 26 in the case of a
square lattice Lx=Ly =L �see Eq. �31��. Regarding the third
term in Eq. �B1�, we note that for two vectors r and a,

1

�r + a�
+

1

�r − a�
−

2

�a�
= O��a�−3� , �B4�

which means that the last sum over �nx ,ny� in the third term
is in fact absolutely convergent provided the summands for
�nx ,ny� and �−nx ,−ny� are added in pairs, i.e., as in Eq. �B4�
with a=nxLx+nyLy �note that in 3D-PBC, the analogous sum
would be only conditionally convergent�. Therefore, Eq.
�B1� can be written as

lim
R→�

�E�R� −
�Qtot

2

LxLy
R	 =

1

2 �
i,j=1

N

qiqjPBC�ri − r j� , �B5�

where

PBC�r� ª V�r� + S + lim
R→�

�
�nx,ny��D�R�

�
1

2
� 1

�r + nxLx + nyLy�
−

1

�nxLx + nyLy�
	 . �B6�
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